供体-受体结构的铜卟啉促进电催化CO2还原制CH4

Promoting Electrocatalytic CO2 Reduction to CH4 by Copper Porphyrin with Donor–Acceptor Structures

Molecular catalysts have been receiving increasingly attention in the electrochemical CO2 reduction reaction (CO2RR) with attractive features such as precise catalytic sites and tunable ligands. However, the insufficient activity and low selectivity of deep reduction products restrain the utilization of molecular catalysts in CO2RR. Herein, a donor–acceptor modified Cu porphyrin (CuTAPP) is developed, in which amino groups are linked to donate electrons toward the central CuN4 site to enhance the CO2RR activity. The CuTAPP catalyst exhibited an excellent CO2-to-CH4 electroreduction performance, including a high CH4 partial current density of 290.5 mA cm−2 and a corresponding Faradaic efficiency of 54.8% at –1.63 V versus reversible hydrogen electrode in flow cells. Density functional theory calculations indicated that CuTAPP presented a much lower energy gap in the pathway of producing *CHO than Cu porphyrin without amino group modification. This work suggests a useful strategy of introducing designed donor–acceptor structures into molecular catalysts for enhancing electrochemical CO2 conversion toward deep reduction products.